首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   25篇
  2023年   3篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   10篇
  2015年   7篇
  2014年   7篇
  2013年   14篇
  2012年   16篇
  2011年   25篇
  2010年   14篇
  2009年   18篇
  2008年   23篇
  2007年   18篇
  2006年   13篇
  2005年   19篇
  2004年   10篇
  2003年   5篇
  2002年   9篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1983年   1篇
  1979年   1篇
排序方式: 共有251条查询结果,搜索用时 500 毫秒
101.
Hypoxia and hypoxia-reoxygenation (H-R) regulate human hepatocyte cell death by mediating the accumulation of reactive oxygen species (ROS). Hepatocytes within the liver are organised into peri-portal (PP) and peri-venous (PV) subpopulations. PP and PV hepatocytes differ in size and function. We investigated whether PP and PV human hepatocytes exhibit differential susceptibility to hypoxic stress. Isolated hepatocytes were used in an in vitro model of hypoxia and H-R. ROS production and cell death were assessed using flow cytometry. PV, and not PP hepatocytes, accumulate intracellular ROS in a mitochondrial dependent manner during hypoxia and H-R. This increased ROS regulates hepatocyte apoptosis and necrosis via a mitochondrial pathway. These findings have implications on the understanding of liver injury and application of potential therapeutic strategies.  相似文献   
102.
IL-23 plays an essential role in maintenance of IL-17-producing Th17 cells that are involved in the pathogenesis of several autoimmune diseases. Regulation of Th17 cells is tightly controlled by multiple factors such as IL-27 and IFN-γ. However, the detailed mechanisms responsible for IFN-γ-mediated Th17 cell inhibition are still largely unknown. In this study, we demonstrate that IFN-γ differentially regulates IL-12 and IL-23 production in both dendritic cells and macrophages. IFN-γ suppresses IL-23 expression by selectively targeting p19 mRNA stability through its 3'-untranslated region (3'UTR). Furthermore, IFN-γ enhances LPS-induced tristetraprolin (TTP) mRNA expression and protein production. Overexpression of TTP suppresses IL-23 p19 mRNA expression and p19 3'UTR-dependent luciferase activity. Additionally, deletion of TTP completely abolishes IFN-γ-mediated p19 mRNA degradation. We further demonstrate that IFN-γ suppresses LPS-induced p38 phosphorylation, and blockade of p38 MAPK signaling pathway with SB203580 inhibits IFN-γ- and LPS-induced p19 mRNA expression, whereas overexpression of p38 increases p19 mRNA expression via reducing TTP binding to the p19 3'UTR. Finally, inhibition of p38 phosphorylation by IFN-γ leads to TTP dephosphorylation that could result in stronger binding of the TTP to the adenosine/uridine-rich elements in the p19 3'UTR and p19 mRNA degradation. In summary, our results reveal a direct link among TTP, IFN-γ, and IL-23, indicating that IFN-γ-mediated Th17 cell suppression might act through TTP by increasing p19 mRNA degradation and therefore IL-23 inhibition.  相似文献   
103.
Nicotine (NIC), cotinine (COT) and trans-3'-hydroxycotinine (OHCOT) are the most prevalent and abundant tobacco biomarkers in meconium. We have developed and validated an accurate and precise method for the measurement of these analytes in meconium in which potassium hydroxide is used to digest the meconium sample, followed by solid phase extraction from the liquified sample. The precision of OHCOT, COT and NIC measurements (intra-day and inter-day) were 4.8-10.6%, 3.4-11.6% and 9.3-15.8%, respectively. Evaluation of accuracy indicated bias of -4.0, 2.0 and 0.8% for OHCOT at concentrations of 0.5, 2.5 and 7.5 ng/g. The accuracy estimates for COT at concentrations of 0.5, 2.5 and 7.5 ng/g are 4.0, 4.0 and 5.7%, respectively. For NIC at 2, 10 and 30 ng/g the accuracy was calculated to be 3.0, 5.0 and 5.1%, respectively. The linear range of standard solutions was 0.125-37.5 ng/mL for OHCOT and COT, and 0.75-150 ng/mL for NIC. This method was applied to the analysis of 374 meconium samples from infants of both smoking and nonsmoking mothers. Positive correlations with r(2)≥0.63 were observed between NIC and COT, COT and OHCOT, NIC and OHCOT, and NIC and (OHCOT+COT) in these samples.  相似文献   
104.

Background

Immunization of mice with the Trypanosoma cruzi trans-sialidase (TS) gene using plasmid DNA, adenoviral vector, and CpG-adjuvanted protein delivery has proven highly immunogenic and provides protection against acute lethal challenge. However, long-term protection induced by TS DNA vaccines has not been reported. The goal of the present work was to test whether the co-administration of a plasmid encoding IL-15 (pIL-15) could improve the duration of protection achieved through genetic vaccination with plasmid encoding TS (pTS) alone.

Methodology

We immunized BALB/c mice with pTS in the presence or absence of pIL-15 and studied immune responses [with TS-specific IFN-γ ELISPOT, serum IgG ELISAs, intracellular cytokine staining (IFN-γ, TNF-α, and IL-2), tetramer staining, and CFSE dilution assays] and protection against lethal systemic challenge at 1 to 6 months post vaccination. Mice receiving pTS alone developed robust TS-specific IFN-γ responses and survived a lethal challenge given within the first 3 months following immunization. The addition of pIL-15 to pTS vaccination did not significantly alter T cell responses or protection during this early post-vaccination period. However, mice vaccinated with both pTS and pIL-15 challenged 6 months post-vaccination were significantly more protected against lethal T. cruzi challenges than mice vaccinated with pTS alone (P<0.05). Improved protection correlated with significantly higher numbers of TS-specific IFN-γ producing total and CD8+ T cells detected>6 months post immunization. Also, these TS-specific T cells were better able to expand after in vitro re-stimulation.

Conclusion

Addition of pIL-15 during genetic vaccination greatly improved long-term T cell survival, memory T cell expansion, and long-term protection against the important human parasite, T. cruzi.

Author Summary

Over 11 million individuals are infected with Trypanosoma cruzi, the causative agent of Chagas disease, which kills >50,000 people annually. Although recent vector control efforts and increased use and effectiveness of chemotherapeutic drugs including benznidazole have reduced infection rates and mortality, a safe, effective vaccine is needed. Vaccination with the T. cruzi trans-sialidase (TS) has been used effectively in mice to reduce mortality and chronic disease, however, the establishment of vaccine-induced long-term protective immunity remains elusive. Co-immunization strategies utilizing immune regulators such as interleukin-12 (IL-12) and interleukin-15 (IL-15) can be used to enhance antigen-specific T cell responses and prolong protective immunity. In the present report, we show that genetic vaccination of BALB/c mice with plasmid DNA encoding both TS and IL-15 compared with plasmid DNA encoding TS alone significantly enhanced CD4+ and CD8+ T cell responses including increased TNF-α, IFN-γ, and IL-2 production, and long-term protection against lethal systemic parasite challenge.  相似文献   
105.
The early use of fresh frozen plasma as a resuscitative agent after hemorrhagic shock has been associated with improved survival, but the mechanism of protection is unknown. Hemorrhagic shock causes endothelial cell dysfunction and we hypothesized that fresh frozen plasma would restore endothelial integrity and reduce syndecan-1 shedding after hemorrhagic shock. A prospective, observational study in severely injured patients in hemorrhagic shock demonstrated significantly elevated levels of syndecan-1 (554±93 ng/ml) after injury, which decreased with resuscitation (187±36 ng/ml) but was elevated compared to normal donors (27±1 ng/ml). Three pro-inflammatory cytokines, interferon-γ, fractalkine, and interleukin-1β, negatively correlated while one anti-inflammatory cytokine, IL-10, positively correlated with shed syndecan-1. These cytokines all play an important role in maintaining endothelial integrity. An in vitro model of endothelial injury then specifically examined endothelial permeability after treatment with fresh frozen plasma orlactated Ringers. Shock or endothelial injury disrupted junctional integrity and increased permeability, which was improved with fresh frozen plasma, but not lactated Ringers. Changes in endothelial cell permeability correlated with syndecan-1 shedding. These data suggest that plasma based resuscitation preserved endothelial syndecan-1 and maintained endothelial integrity, and may help to explain the protective effects of fresh frozen plasma after hemorrhagic shock.  相似文献   
106.
107.
108.
Amplification of DNA in vivo occurs in intracellular environments characterized by macromolecular crowding (MMC). In vitro Polymerase-chain-reaction (PCR), however, is non-crowded, requires thermal cycling for melting of DNA strands, primer-template hybridization and enzymatic primer-extension. The temperature-optima for primer-annealing and extension are strikingly disparate which predicts primers to dissociate from template during extension thereby compromising PCR efficiency. We hypothesized that MMC is not only important for the extension phase in vivo but also during PCR by stabilizing nucleotide hybrids. Novel atomistic Molecular Dynamics simulations elucidated that MMC stabilizes hydrogen-bonding between complementary nucleotides. Real-time PCR under MMC confirmed that melting-temperatures of complementary DNA–DNA and DNA–RNA hybrids increased by up to 8°C with high specificity and high duplex-preservation after extension (71% versus 37% non-crowded). MMC enhanced DNA hybrid-helicity, and drove specificity of duplex formation preferring matching versus mismatched sequences, including hair-pin-forming DNA- single-strands.  相似文献   
109.
The stability of arteries is essential to normal arterial functions and loss of stability can lead to arterial tortuosity and kinking. Collagen is a main extracellular matrix component that modulates the mechanical properties of arteries and collagen degradation at pathological conditions weakens the mechanical strength of arteries. However, the effects of collagen degradation on the mechanical stability of arteries are unclear. The objective of this study was to investigate the effects of collagen degradation on the critical buckling pressure of arteries. Arterial specimens were subjected to pressurized inflation testing and fitted with nonlinear thick-walled cylindrical model equations to determine their stress strain relationships. The arteries were then tested for the critical buckling pressure at a set of axial stretch ratios. Then, arteries were divided into three groups and treated with Type III collagenase at three different concentrations (64, 128, and 400U/ml). Mechanical properties and buckling pressures of the arteries were determined after collagenase treatment. Additionally, the theoretical buckling pressures were also determined using a buckling equation. Our results demonstrated that the buckling pressure of arteries was lower after collagenase treatment. The difference between pre- and post- treatment was statistically significant for the highest concentration of 400U/ml but not at the lower concentrations. The buckling equation was found to yield a fair estimation to the experimental critical pressure measurements. These results shed light on the role of matrix remodeling on the mechanical stability of arteries and developments of tortuous arteries.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号